Shoulder Fracture System

Anatomic adaptability . . . simplified

SURGICAL TECHNIQUE
DESIGN RATIONALE

Conventional shoulder implants are frequently not suitable for optimal reconstruction of proximal humerus fractures because of the loss of anatomic orientation features and the inability to adequately reduce and securely fix the displaced tuberosity fragments. Through the unique design of the implant and instrumentation, the Arthrex Univers Shoulder Fracture System will address the issues relating to stabilization of the humeral prosthesis and accurate positioning of the humeral head, combined with a straightforward reproducible protocol to accurately reduce and fix the tuberosities.

The system includes:

- A preoperative and intraoperative measuring guide to accurately set the humeral head height without the need for technically demanding and complicated fracture jigs.
- Intraoperative adjustable humeral head prosthesis for secondary correction of the implant head height.
- Lateral fin positions with suture eyelets for anatomic reconstruction of the tuberosities.
- Multiple suture eyelets on the Trunion to prevent secondary displacement of the tuberosities.
- Smooth chamfered dimples in the medial aspect of the humeral stem to allow suture fixation of the tuberosities fragments without causing suture fraying and breakage.
- Variable eccentric adjustment of the humeral head for anatomic reconstruction.

INDICATIONS

The Univers fracture prosthesis is indicated for treatment of severe pain or significant disability resulting from degenerative, rheumatoid, or traumatic disease or injury of the glenohumeral joint. These indications would include traumatic or pathologic conditions of the shoulder resulting in fractures of the glenohumeral joint, comminuted fractures, humeral head fractures, displaced three or four part proximal humerus fractures, avascular necrosis of the humeral head and fractures of the anatomic neck. The Univers Shoulder Fracture System is designed for cemented or cementless use.

Variable Head Height

From the initial position, the prosthesis head can be adjusted in a superior (7.5 mm) and inferior (7.5 mm) direction, a total of 15 mm. This allows the surgeon to fine-tune the head height from the initial in situ insertion position in order to reconstruct the anatomic head-to-tuberosity distance.
Attach the T-Handle to the 8 mm reamer. Advance the reamer down the humeral canal until the first circumferential groove is even with the shaft fracture line. Continue reaming with progressively larger reamer sizes until resistance is felt from the cortical bone. For noncemented application, select the implant which corresponds to the final reamer size. If cementing the stem is desired, an implant equal to or one size smaller than the final reamer size is recommended. Two holes are drilled in the humeral shaft on either side of the bicipital groove 1 cm inferior to the fracture, accommodating later suture placement and tuberosity repair.
Once the head height adjustments have been made, the locking screw is tightened to lock the jack-screw mechanism. A side specific locking screwdriver labeled ‘left’ or ‘right’ that corresponds with the operative shoulder is selected from the instrument tray. The design of the uni-directional locking screwdriver prevents rotation of the locking mechanism in a direction contrary to the intended locked position. The appropriate locking screwdriver is inserted into the set screw and rotated until it is tight.

Note: Once the locking screw has been tightened, it may not be possible to unlock for further adjustments.
The Trial Head is removed to access the Trunion Flange holes. Two FiberWire sutures are threaded through the posterior Trunion Flange holes and sutured through the bone tendon junction of the major tuberosity. These sutures prevent the tuberosity from moving behind or over the prosthetic head. The Trial Head can be reattached to ensure that the appropriate soft tissue tension is achieved.

Three FiberWire sutures are positioned through the tendon-bone junction and around the medial prosthesis neck. Each suture is then fed through one of the holes in the lateral fin.

The lesser tuberosity is reduced with two FiberWire sutures through the Trunion Flange holes and through the tendon/bone junction. Autogenous bone graft may be taken from the humeral head with a small curette and packed between the humeral shaft, the tuberosity and the implant.

The lesser tuberosity is positioned around the prosthesis neck and fixed with three FiberWire sutures through the bone/tendon junction. These sutures are threaded through the lateral fin holes where the major tuberosity is already fixed. Prior to tying all the sutures, the Trial Head is adjusted to the appropriate offset position. The prosthetic head is then opened, positioned with selected offset and impacted onto the Humeral Stem. Sutures are then tied securely.
FiberWire sutures are used to secure the shaft to the tuberosities using a tension band weave. These vertical tension band sutures are used to ensure the tuberosity fragments are mechanically attached to the humeral shaft to prevent proximal migration.

The rotator interval is sutured and a biceps tenodesis is performed.

STEM EXTRACTION

Should the Humeral Stem need to be removed, the Extractor/Adapter is attached to the superior lateral corner of the Stem. The nipple end of the Slap Hammer slides into the receiving slot on the Extractor/Adapter.

The Extractor/Adapter is removed from the stem by depressing the small spring-loaded pin on the side of the Extractor/Adapter.
UNIVERS FRACTURE INSTRUMENT SET (AR-9201S)

TOP TRAY
1. **Humeral Head Trials**
 - AR-9243-15F
 - AR-9246-17F
 - AR-9248-17F
 - AR-9250-19F
 - AR-9251-22F
 - AR-9253-19F

2. **Humeral Stem Trials, 8 mm - 13 mm**
 - AR-9204-21
 - AR-9204-22
 - AR-9204-23
 - AR-9204-24
 - AR-9204-25
 - AR-9204-26

MIDDLE TRAY
1. **Version Rods (Qty. 3)**

2. **Locking Screw Driver, Right**
 - AR-9204-05

3. **Locking Screw Driver, Left**
 - AR-9204-04

4. **Height Adjustment Screw Driver**
 - AR-9204-03

5. **Trial Stem Impactor**
 - AR-9204-18

6. **Stem Impactor, 8 mm - 10 mm**
 - AR-9204-13

7. **Head Impactor**
 - AR-9202-13

8. **Stem Impactor, 11 mm - 13 mm**
 - AR-9204-14

BASE TRAY
1. **Trial Extraction Adapter**
 - AR-9204-19

2. **Implant Extraction Adapter**
 - AR-9204-02

3. **Reamer T-Handle**
 - AR-9202-15F

4. **Slap Hammer**
 - AR-9202-14

5. **Humeral Reamers, 8 mm - 13 mm**
 - AR-9200-08F
 - AR-9200-09F
 - AR-9200-10F
 - AR-9200-11F
 - AR-9200-12F
 - AR-9200-13F

MEASURING GUIDES
1. **Preoperative Measuring Guide**
 - AR-9204-07

2. **Poly Block Screw**

3. **Poly Block/Metal Pointer for Intraoperative Measuring Guide**

4. **Poly Block for Intraoperative Measuring Guide**

5. **Intraoperative Measuring Guide**
 - AR-9204-08
Ordering Information

Univers Fracture Instrument Set
AR-9201S

Implants:

- Humeral Stem, Fracture, 8 mm x 158 mm
 AR-9100-08F
- Humeral Stem, Fracture, 9 mm x 173 mm
 AR-9100-09F
- Humeral Stem, Fracture, 10 mm x 180 mm
 AR-9100-10F
- Humeral Stem, Fracture, 11 mm x 187 mm
 AR-9100-11F
- Humeral Stem, Fracture, 12 mm x 195 mm
 AR-9100-12F
- Humeral Stem, Fracture, 13 mm x 204 mm
 AR-9100-13F
- Humeral Head, Fracture, 43 mm x 15 mm
 AR-9143-15F
- Humeral Head, Fracture, 46 mm x 17 mm
 AR-9146-17F
- Humeral Head, Fracture, 48 mm x 17 mm
 AR-9148-17F
- Humeral Head, Fracture, 50 mm x 19 mm
 AR-9150-19F
- Humeral Head, Fracture, 51 mm x 22 mm
 AR-9151-22F
- Humeral Head, Fracture, 53 mm x 19 mm
 AR-9153-19F

Accessories:

- FiberWire Suture Kit
 AR-7219
- #2 FiberWire, 38 inches (blue) w/Tapered Needle,
 26.5 mm, 1/2 circle, qty. 12
 AR-7200
- #2 FiberWire, 38 inches w/Reverse Cutting Needle,
 36.6 mm, 1/2 circle, qty. 12
 AR-7202
- #5 FiberWire, 38 inches (blue)
 AR-7210
- #5 FiberWire, 38 inches w/Conventional Cutting Needle,
 48 mm, 1/2 circle, qty. 12
 AR-7211

The Univers Shoulder Fracture System was designed in cooperation with Prof. Dr. med. habil. Peter Habermeyer, ATOS Clinic, Heidelberg, Germany. This surgical technique has been developed in cooperation with Prof. Dr. med. habil. Peter Habermeyer, ATOS Clinic, Heidelberg, Germany and Anthony Romeo, M.D., Rush University Medical Center, Chicago, Illinois.

© 2014, Arthrex Inc. All rights reserved.

U.S. PATENT NO. 6,716,234; 7,204,854 and PATENTS PENDING. LTI-0700-EN_E