BACKGROUND

A considerable amount of research has been conducted in recent decades to identify methods to speed wound healing in chronic wounds, including Ag dressings, creams and superabsorbent dressings. However, wound healing response was observed in contact with the MCD. Modality including Ag dressings, creams and superabsorbent dressings, but none of the other treatments hastened healing. The device generates approximately 2-10 microamperes of current, significantly influencing wound healing in acute wounds and stalled chronic wounds of various etiologies (1). The device was used on five patients presenting with chronic ulcers, including ischemic wound dehiscence, traumatic excisional skin revisions, and chronic pressure sores. In a standard protocol, the device was used as a primary contact dressing, with improved patient comfort and clinic visits, following application of the device (2). In the presence of a conductive fluid, the device generates approximately 2-10 microamperes of current, and has been observed to facilitate healing in acute wounds and stalled chronic wounds (3-5). The device was used on five patients presenting with chronic ulcers, including ischemic wound dehiscence, traumatic excisional skin revisions, and chronic pressure sores. In a standard protocol, the device was used as a primary contact dressing, with improved patient comfort and clinic visits, following application of the device (2).

METHODS

A microcurrent generating wound device** was used to evaluate chronic wound healing outcomes in a wound healing protocol. The device is 15 mm in diameter and emits a current of 2-10 microamperes. The device was used on five patients presenting with chronic ulcers, including ischemic wound dehiscence, traumatic excisional skin revisions, and chronic pressure sores. In a standard protocol, the device was used as a primary contact dressing, with improved patient comfort and clinic visits, following application of the device (2).

RESULTS

Significant reductions in wound size were noted in follow-up clinic visits. Following application of the microcurrent generating wound device, wound size was observed to shrink significantly. The device was used on five patients presenting with chronic ulcers, including ischemic wound dehiscence, traumatic excisional skin revisions, and chronic pressure sores. In a standard protocol, the device was used as a primary contact dressing, with improved patient comfort and clinic visits, following application of the device (2).

CONCLUSION

Four of the five patients began treatment with traditional methods, including Ag dressings, creams and superabsorbent dressings, but none of the other treatments hastened healing. The device generates approximately 2-10 microamperes of current, significantly influencing wound healing in acute wounds and stalled chronic wounds of various etiologies (1). The device was used on five patients presenting with chronic ulcers, including ischemic wound dehiscence, traumatic excisional skin revisions, and chronic pressure sores. In a standard protocol, the device was used as a primary contact dressing, with improved patient comfort and clinic visits, following application of the device (2). In the presence of a conductive fluid, the device generates approximately 2-10 microamperes of current, and has been observed to facilitate healing in acute wounds and stalled chronic wounds (3-5). The device was used on five patients presenting with chronic ulcers, including ischemic wound dehiscence, traumatic excisional skin revisions, and chronic pressure sores. In a standard protocol, the device was used as a primary contact dressing, with improved patient comfort and clinic visits, following application of the device (2).

REFERENCES

5. Thirumurthy, I. A new Innovative Infrared Approach to Noninvasive Wounds. Presented at the Symposium on Advanced Wound Care, ALEXIAN BROTHERS HEALTH SYSTEM

Case 1: Surgical Dehiscence
65 yo male patient presented with surgical wound dehiscence following recent appendectomy. PMH: Ventricular tachycardia, left foot osteomyelitis, bladder cancer, ureter resection, CAD x/s triple bypass, bladder removal w/ Ileal conduit, right heel surgery, diabetic. Past tx: Silver alginite, gel adhesive hydrogel foam dressing with border. Approach: MCD, hydrogel, steri-strip, gel adhesive hydrogel foam dressing with border, dressing change every 3 days.

Case 2: Chronic Ulceration

Case 3: Traumatic Ulceration
72 yo male presented with ulcer of traumatic etiology on posterior aspect of right calf for 2 months duration. 50% necrotic debrided tissue. PMH: unremarkable. Past tx: silver nonadherent dressing, unna boot. Approach: MCD applied, hydrogel, abd, unna.

Case 4: Surgical Dehiscence
76 yo male with non infected full thickness ulceration on right medial ankle from wound dehiscence after surgery for peripheral nerve disease. Uncompromised on chronic steroids. Complicating factors: Chronic use of corticosteroid & Clopidogrel, history of scleroderma. Approach: MCD applied with hydrogel, super absorbent dressing, multilayer compression.

Case 5: Venous Stasis Ulceration

Authors: Holly Swan, RN, BSN, WCC, Melissa Davis, Hyperbaric Oxygen & Wound Tech
Alexian Brothers Medical Center, Elk Grove Village, IL

*Procellera® Antimicrobial Wound Dressing, Vomaris Wound Care, Inc., Tempe, AZ