Microfracture augmented with allograft cartilage and autologous platelet-rich plasma improves function after hip arthroscopy: A short-term analysis

I. AL’KHAFAJI 1, T. LUO 2, A. TRAMMELL 2, T. VANHORN 2, M. KOULOPoulos 2, A. MARQUEZ-LARA 2, M. SCHALLMO 2, S. ROSAS 2, and A. STUBBS* 1
1. Kerlan-Jobe Institute, Santa Monica, CA, USA
2. Wake Forest Baptist Medical Center, Winston-Salem, NC, USA

INTRODUCTION

Articular cartilage injuries of the hip are challenging to treat. Due to the limited healing capacity of cartilage, these lesions can progress to arthritic joint changes and are often diagnosed during hip arthroscopy as they are associated with labral tears and femoroacetabular impingement. These defects occur most frequently in the anterosuperior aspect of the acetabulum. A novel technique using biologic scaffolds combining minced allograft cartilage and autologous platelet-rich plasma (BioCartilage®, Arthrex, Naples, FL) has been introduced to augment microfracture treatment of symptomatic chondral defects.

AIM

The purpose of this study was to evaluate short-term outcomes in a series of patients who underwent hip arthroscopy with biologically augmented microfracture procedures. We hypothesized that patients who undergo this procedure would demonstrate significant improvements in clinical outcome scores at one year postoperatively.

METHOD

- Prospective case series of adult patients (age ≥ 18) with symptomatic hip pain and high-grade chondromalacia (Outerbridge IV).
- Previously failed conservative management.
- Cartilage degeneration quantified using a previously reported chondromalacia severity index (CMI): product of Outerbridge grade and estimated affected surface area (mm²) for each chondral lesion.

RESULTS

N=13 (7 females, 6 males)
Mean age 32.5 ± 8.7 years
Mean BMI of 29.4 ± 5.3 kg/m²
All patients demonstrated severe acetabular chondromalacia with mean CMI of 641.2 grade x mm²
9/13 patients demonstrated femoral head chondromalacia with mean CMI of 394.2 grade x mm²
1 patient underwent THA 12 months after hip arthroscopy [history of previous femoral osteotomies and screw fixation for treatment of slipped capital femoral epiphysis (SCFE)]
9/12 patients (75%) who did not have prior hip surgical intervention were available for follow-up at mean of 15.4 months (minimum 12.2 months)

Significant improvements in patient-reported outcomes (PROs) were seen at 1 year (Table 1)

<table>
<thead>
<tr>
<th>PRO</th>
<th>Preoperativ e score</th>
<th>Postoperativ e score</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified Harris Hip Score</td>
<td>59.3 ± 12.8</td>
<td>89.9 ± 16.6</td>
<td>0.002</td>
</tr>
<tr>
<td>Hip Outcome Score-ADL</td>
<td>64.0 ± 16.7</td>
<td>95.3 ± 9.2</td>
<td>0.003</td>
</tr>
<tr>
<td>Hip Outcome Score-SSS</td>
<td>42.6 ± 26.1</td>
<td>90.9 ± 16.0</td>
<td>0.002</td>
</tr>
<tr>
<td>Nonarthritic Hip Score</td>
<td>62.2 ± 14.3</td>
<td>90.1 ± 16.3</td>
<td>0.005</td>
</tr>
<tr>
<td>Legger Score</td>
<td>4.3 ± 3.5</td>
<td>5.6 ± 2.7</td>
<td>0.104</td>
</tr>
</tbody>
</table>

CONCLUSIONS

Early experience with this technique supports the concept that biological augmentation of microfracture with has similar indications, is equally safe, is simple to perform, and may lead to better overall restoration of the articular surface compared with microfracture alone.

Patients without prior hip procedures demonstrated significant functional improvements with microfracture with biologic augmentation at one-year. The patient who failed microfracture treatment had multiple prior hip procedures for SCFE, including previous femoral osteotomy, and exhibited substantial bipolar hip pathology, highlighting the need for further research to optimize patient selection for this novel technique.

REFERENCES


CONTACT INFORMATION

Ian Al’Khafaji, M.D. (ialkhafa@gmail.com)
Kerlan-Jobe Institute
2020 Santa Monica Blvd
Santa Monica, CA 90404, USA

Microfracture with biologic augmentation is introduced to augment microfracture treatment of symptomatic chondral defects.