An innovative bioelectric approach to recalcitrant wounds

Stephen Bergquist, MD, CWSP
Wound Management Center, Jackson-Madison County General Hospital, Jackson, TN

BACKGROUND

Non-responding wounds, present for years, pose a complex challenge to the practitioner. Even following identification and correction of contributing host factors and implementation of a spectrum of advanced wound therapies (1), some chronic wounds remain resistant to all efforts aimed at initiating healing. Protracted healing spanning over years adversely affects quality of life, with debilitating social and psychological implications and significant financial burden. Innovative technologies to stimulate the wound healing process and reverse recalcitrant wounds are warranted. A novel bioelectric dressing* that has been observed to enhance wound healing rates (2-3) may provide a targeted approach to the wound microenvironment through the generation of low-level microcurrents at the device surface. The wireless dressing, embedded with a matrix of microbiobies, electrically activates with moisture and generates electric fields with sustained voltages in the range of 0.3 to 0.9 Volts.

METHODS

Two non-responding wounds of complex etiologies that had delayed healing for at least 2 years were followed in this case series. Case #1 was a DFU; patient was recommended for BKA. Case #2 was a recalcitrant VLW with recurring leg ulcers. Both wounds had failed to respond to an assortment of therapeutic modalities ranging from NPWT and synthetic skin substitutes to surgical interventions. Both wounds were treated with a bioelectric dressing covered with secondary dressings that was changed 1 to 2 times a week. Signs of healing initiation were documented at clinic visits.

RESULTS

Healing initiation was observed following the application of the bioelectric wound dressing, with limb preservation in both cases. Rapid improvement in wound closure rate was observed in case 1, with 99% reduction in wound volume at day 175. In case 2, 99% closure was observed at day 63.

CONCLUSION

A bioelectric dressing holds significant promise as a treatment regimen for recalcitrant wounds, particularly in cases where multiple applications of synthetic tissue matrices had been attempted but had failed. The use of a 7-day dressing in the management of the present wounds also reduced need for dressing changes, pointing to possible time and resource savings. Rather than taking on an unnecessary course of protracted healing, the bioelectric dressing should be considered not after other advanced modalities have failed—but as the first line of therapy.

REFERENCES

1) Widgerow AD. Deconstructing the Stalled Wound. Wounds. 2012;24(3)

*Apigraft®, Organogenesis, Canton, MA

Table: Volume Reduction

<table>
<thead>
<tr>
<th>Day</th>
<th>L (cm)</th>
<th>W (cm)</th>
<th>D (cm)</th>
<th>Volume (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0.238</td>
<td>0.132</td>
<td>0.561</td>
<td>3.050</td>
</tr>
<tr>
<td>Day 35</td>
<td>0.105</td>
<td>0.52</td>
<td>0.6</td>
<td>2.73</td>
</tr>
<tr>
<td>Day 56</td>
<td>0.56</td>
<td>1.1</td>
<td>1.1</td>
<td>0.759</td>
</tr>
<tr>
<td>Day 133</td>
<td>0.22</td>
<td>0.6</td>
<td>0.1</td>
<td>0.142</td>
</tr>
<tr>
<td>Day 175</td>
<td>0.17</td>
<td>0.7</td>
<td>0.2</td>
<td>0.236</td>
</tr>
</tbody>
</table>

Graph:

![Percent Reduction in Volume](image-url)