3.9 mm Knotless Corkscrew® Anchor

The 3.9 mm Knotless Corkscrew anchor is the next generation of knotless technology, using the same approach as a knotted anchor but with a knotless result. It offers a threaded anchor design with the proven and reproducible K notless SutureTak® anchor self-locking mechanism. The threaded anchor increases pull-out strength for repairs in soft bone, and the knotless locking mechanism allows sequential tensioning of the repair after the anchor is implanted and can be used in an interconnected fashion to create transtendon knotless-bridging constructs. Its primary uses include PASTA repair, remplissage, upper border subscapularis tear repair and glenoid graft fixation for Superior Capsular Reconstruction (SCR) procedures.

ACL/PCL Backup Fixation with SwiveLock® Anchor

The ACL/PCL Backup Fixation System contains a 4.75 mm SwiveLock anchor, Spade Tip Drill, and disposable tap. This allows a quick and effective way to back up ACL or PCL reconstructions. Backup fixation for interference screws increases initial tibial fixation strength and stability.2,3 The SwiveLock anchor provides a simple, low-profile option for backup fixation.

Visit Arthrex at the AAOS 2018 Annual Meeting

As the leader in new product development and medical education in orthopedics, Arthrex highlights its latest, cutting-edge technology at booth #5341 at the AAOS Annual Meeting. Come see how Arthrex fulfills its mission of Helping Surgeons Treat Their Patients Better™ with new innovations in arthroscopic imaging, arthroscopic surgery, distal extremities, orthobiologics, trauma and next-generation arthroplasty on display. Arthrex is proud to be the exclusive sponsor of the AAOS My Academy App for the third consecutive year.

References
2.6 mm FiberTak® Suture Anchors

The 2.6 mm FiberTak suture anchors offer two suture options for single- and double-row rotator cuff repairs. With double- and triple-loaded SutureTape options, this soft anchor is inserted in a small 2.6 mm socket in bone and leverages the latest innovation in suture technology.

SutureTape – Next-Generation FiberWire® Suture

SutureTape is a #2 suture braided flat instead of round. It is similar in strength to FiberWire suture but more resistant to tissue pull-through. It offers improved handling and knot security with smaller comparable knot stacks.1

2.4 mm Mini Hip PushLock® Anchor with SutureTape Suture

The 2.4 mm Mini Hip PushLock anchor is the smallest knotless hip anchor available on the hip preservation market. Its small size, short drilling depth and compatibility with multiple suture options set it apart from the competition as a versatile bone-preserving implant.

Key Features and Benefits:
- 2.4 mm x 8.0 mm (implant and eyelet)
- 41% less polymer material implanted than with a 2.9 mm Short Hip PushLock anchor
- Shortened drilling depth reduces the risk of articular cartilage penetration with a drill bit
- Smaller outer diameter allows for more points of fixation along the acetabulum
- Accommodates #2 FiberLink®, #1 FiberWire® and SutureTape sutures

Meniscal Root Repair Kit

The Meniscal Root Repair Kit conveniently contains items to complete a transtibial meniscal root repair. Included in the kit is an 8 mm x 3 mm PassPort Button™ cannula and a Knee Scorpion™ needle, for use with the autoclavable Knee Scorpion suture passer to pass either 2-0 or 0 FiberWire suture. 2.0 FiberStick® and 0 FiberLink™ sutures (2 of each) provide various suture configuration options. The Nitinol wire in the 2.4 mm diameter SutureLasso™ needle facilitates suture shuttling. Bone preparation and the transtibial tunnel may be created with the 6 mm FlipCutter® II drill and a 2-hole titanium button is included for suture fixation.

FiberLoop® Suture with FiberTag® Tape

The new FiberLoop suture with FiberTag tape has a stronger needle that is swaged onto the suture. This facilitates passage through thicker, tougher tissue (such as quad tendon grafts). SpeedWhip™ rip-stop suturing with FiberTag tape eliminates the weak link in graft preparation by reinforcing the suture/tissue interface and is ideal for connecting quad tendon grafts to the ACL TightRope® implant.

Reference
Synergy® System

The Synergy® system uses bipolar radio-frequency technology to effectively ablate tissue at relatively low temperatures in arthroscopic procedures. Maintaining low fluid temperature is an important step in the procedure and is controlled by ablation technique, fluid flow and strong suction to the probe. The DualWave™ pump is highly effective at helping maintain lower temperatures. Three ApolloRF® probes were tested in separate scenarios with different fluid management styles.

The 3 scenarios were:
- **Setup 1**: No inflow of fluid, no probe suction or outflow tubing used. Note: SynergyRF and ApolloRF-aspirating probes are indicated for use with suction and a constant flow of conductive fluid during arthroscopy. This scenario was for testing purposes only.
- **Setup 2**: Fluid inflow at 250 mL/minute, probe suction and additional outflow tubing used.
- **Setup 3**: Fluid inflow at 250 mL/minute with only probe suction used.

As you can see from the results, the temperature nearly doubles when fluid is stagnant in the joint, while fluid temperatures remain low when suction and fluid flow is emphasized. Proper fluid management guidelines are important to managing fluid temperature in the joint.

- **Setup 1**
 - **Before**: 23.3˚
 - **After 1 minute**: 24.2˚

- **Setup 2**
 - **Before**: 24.2˚
 - **After 1 minute**: 24.3˚

- **Setup 3**
 - **Before**: 24.0˚
 - **After 1 minute**: 23.3˚

Continuous Wave™ 4 Arthroscopy Pump

Arthrex offers a clear vision of the future with the Continuous Wave 4 arthroscopy pump. This fully integrated inflow-only arthroscopy pump now includes a Synergy Heads-Up Display and communicates directly with the Synergy resection system.

The touch-panel video display gives real-time pressure and flow readings, displays the total fluid used during a case, as well as the total run time at the end of a procedure.

User-selected defaults encompass pressure settings (by joint space), flow rate and shaver boost levels. The lavage mode allows the user to control pressure at the touch of a button. The addition of shaver detection provides an optional boost of pressure when the shaver is activated.

You will clearly see the difference with an Arthrex Continuous Wave 4 arthroscopy pump.
Arthrex Amnion™ Matrix

Just as the amniotic membrane protects and nourishes the fetus during development, Arthrex Amnion provides the same support to damaged tissue. Amnion contains growth factors and extracellular matrix proteins essential to healing that reduce scar tissue formation, reduce inflammation and support soft tissue regeneration. Arthrex Amnion matrix is available in both thin and thick membranes ideal for orthopedic applications. It is intended for use as a soft-tissue covering, barrier or wound covering. When used as an anatomical barrier or wrap for tendons and nerves, Amnion matrices can help protect the repair while preventing adhesion or scar tissue formation. Arthrex Amnion viscous is a versatile amniotic fluid rich in growth factors that activate the body's own healing response. It is available in convenient sizes and can be applied directly at the site of augmentation, inflammation or injury. It is intended for use as an additive for surgical applications associated with soft-tissue procedures.

References

AlloSync™ Demineralized Bone Matrix

AlloSync demineralized bone matrix products offer a comprehensive solution for bone-grafting procedures. From demineralized cancellous sponges and cortical fibers to flowable gel/paste and DBM putties, the AlloSync bone-grafting product line has a solution for even the most challenging clinical conditions. AlloSync bone products provide an optimal scaffold for cellular attachment and proliferation. AlloSync sponges and fibers provide a natural architecture and interconnected porosity that naturally absorb and retain bioactive fluids like bone marrow concentrate (BMC) and platelet-rich plasma (PRP). Every lot is tested for osteoinductive potential and provided as ready-to-use sterile products.

Top 10 Most-Viewed Videos of the Year

As a leader in medical education, we’re bringing you exclusive access to our premier surgical technique videos and related science for our emerging technology and techniques through the weekly What’s New email and daily What’s New features on Arthrex.com. Stay connected by signing up to receive What’s New emails: cptr.it/whatsnew17.

See the Top 10 What’s New videos of the year here: cptr.it/STOtop10. Click on the thumbnails below to watch each individual video.
There has been a recent resurgence of interest in primary repair as the treatment for certain patterns of ACL rupture. The technique of primary ACL repair was largely abandoned by the mid-1990s due to unpredictable clinical outcomes. However, careful analysis of the older data reveals that certain subgroups, especially proximal tears with good tissue quality, had better clinical outcomes than the group as a whole.

Due to advances in diagnostic imaging, arthroscopic surgical technology and rehabilitation approaches over the past several decades, primary ACL repair is a concept that is ripe for reevaluation.

1. Pass a TigerStick® suture through the drill sleeve and the ACL footprint. Retrieve the loop of suture out of the medial portal.

2. Using the Labral Scorpion™ suture passer, pass a #2 FiberLink™ suture through the intact portion of the AM bundle (approximately 1 cm from the avulsed end). Create a racking stitch with the FiberLink suture and “dock it out” the medial portal. Repeat this process with a #2 TigerLink™ suture in the PM bundle of the avulsed ACL.

3. Pull the TightRope passing suture to pull the button through the femur while pulling slack out of the tensioning strands and FiberLink/TigerLink suture strands. Use arthroscopic visualization of the button to confirm exit and proper placement on the femoral cortex.

4. Use the tibial passing suture to shuttle the FiberTape suture through the tibia. Create an ACL InternalBrace ligament augmentation construct (as shown above) by looping a FiberTape® suture through the loop of a double-loaded TightRope® RT implant. Remove the large #5 FiberWire® passing suture from the eyelet next to the loop. Use the #2 “flipping suture” (a) as the passing suture. Place the FiberLink and TigerLink repair sutures from the ACL stump through the eyelets next to the TightRope loop.

5. Tie the FiberLink and TigerLink sutures over the button to reapproximate the ACL stump to the femoral notch.

6. Tie the FiberLink and TigerLink sutures over the button to reapproximate the ACL stump to the femoral notch. Use the SwiveLock® Backup ACL Fixation Kit (AR-1593) that includes a drill and tap for the 4.75 mm SwiveLock anchor. Drill a hole 1 cm distal to the tibial bone tunnel and 20 mm in depth (positive stop provided on drill). Use the bone tap for the 4.75 mm SwiveLock anchor and thread the hole accordingly. Place the knee in full extension and fix the FiberTape suture with the 4.75 mm SwiveLock anchor.
BRING SYNERGY TO YOUR HOSPITAL

The Synergy Matrix™ Integration system is the world’s first full 4K-integrated operating room. Our 4K technology and integrated system provide multispecialty use that helps you create efficiencies while delivering intraoperative documentation directly to your patients, enhancing their experience.

We have redefined the OR experience from pre-op to post-op with our EHR-interfacing, 4K-switching and -routing, dependable capital equipment and revolutionary modular power tools.

Allow Arthrex to help you envision your future with the Synergy Matrix integrated OR. You can take a tour of our virtual OR on our website or, if you are attending the AAOS 2018 Annual Meeting, visit Booth 5341 to tour the Synergy Matrix integrated OR.

TAKE AN IN-PERSON TOUR

AAOS 2018 Annual Meeting
Booth 5341

TAKE A VIRTUAL TOUR

using this URL:
https://cptr.it/SynergySTO
IntraOsseous BioPlasty™: The Biologic Treatment of Bone Marrow Lesions

The recent discussions on how to treat symptomatic bone marrow lesions (BMLs) have led to the introduction of the IntraOsseous BioPlasty (IOBP™) technique. This procedure centers around the ability to treat insufficiency fractures, persistent bone bruises, BML associated with osteoarthritis, and early stages of avascular necrosis. The principles of the IOBP are simple – decompress the BML and deliver a concentrated dose of PRP concentrate from BMA using the Arthrex Angel® cPRP and Bone Marrow Processing System. When mixed with a flowable demineralized bone matrix, such as DBM gel, the biologic material delivered to the bone marrow lesion contains all of the necessary components to aid bone repair, including an osteoconductive and osteoinductive scaffold.

Research has shown the positive clinical outcomes of treating BMLs and persistent bone fracture, or nonunions, with bone marrow concentrate. Clinical outcomes presented by Sanchez, et al indicate pain and function improves following intraosseous delivery of a biologic into BML associated with osteoarthritis.

The IntraOsseous BioPlasty procedure is the biologic treatment of bone marrow lesions with techniques that encourage physiologic bone remodeling and repair.

All-Inside ACL Reconstruction with GraftLink™ Technique

The Surgical Outcomes System™ (SOS) global registry is an orthopedic and sports medicine resource enabling physicians to easily collect and analyze patient outcomes and treatment procedures to quantify results for quality assurance, reimbursement, marketing and research.

Featured Report
https://www.arthrex.com/resources/clinical-case/DFItgs8dW0SZMwFPDpnr1A/all-inside-acl-reconstruction-with-graftlink-sup-sup-technique.20k

Purpose
To report the clinical outcome of pain, function and quality of life for patients who have undergone all-inside ACL reconstruction using the GraftLink technique for graft preparation.

Methods
The inclusion criteria for this analysis were patients enrolled in the Surgical Outcomes System global registry who underwent an all-inside ACL reconstruction performed using GraftLink technique for graft preparation. Standard patient-reported outcomes questionnaires for VAS, KOOS Sport/Rec and the Marx activity were administered at standard time points postoperatively. Results were reported from presurgery out to 2 years postsurgery. The number of patients included per time point is shown below.

Trend Conclusion
Based on these results, the pain, function and quality-of-life scores for all-inside ACL reconstruction with the GraftLink technique trend towards favorable outcomes. However, no claims can be made on the potential of these results without further statistical analysis to determine if there is statistical significance.

Results