iBalance Bi-Compartment Arthroplasty
Surgical Technique
This technique guide was developed in conjunction with Michael Bradley, MD
With the knee in 90° of flexion, use a skin marker to mark a 4-5 inch line starting directly over the medial facet of the patella and extending down medially to the patellar tendon. Create the incision, identifying the deep fascia of the knee. Continue the arthrotomy from about the 1:30 (or 10:30) position on the patella, down along the medial aspect of the patella to the patellar tendon. Bring the knee into full extension and to expose the articular surface of the patella. Place a roll of towels or bump behind the knee to bring the knee into 20-30° of flexion to visualize the affected trochlea area or contact area.

Measure the thickness of the patella with the Patella Calipers. Using a sagittal saw, resect 8-10 mm of bone, matching the thickness of the iBalance patellar components. Assess the proper coverage of the resected patella with the appropriate size Patella Drill Guide. Drill the peg holes through the drill guide.
Place the stylus of the Anterior Cortex Alignment Guide directly on the anterior cortex of the femur, proximal to the superior flare of the trochlea, making sure that there is no soft tissue impingement that would alter the reference position. Position the drill sleeve approximately 1 cm anterior to the posterior aspect of the notch and drill the canal using the 5 mm IM Drill.

Insert the IM rod of the left or right Anterior Cut Guide Base into the canal with the base of the guide placed flush on the condyles. Rotate the guide such that it matches the transepicondylar axis. Once the rotational orientation is verified, pin the guide in place through the medial pin hole using a nonheaded pin.

Place the Anterior Cut Guide onto the Anterior Resection Guide and thread down onto the height adjustment bolt with the rounded knob located on top of the guide, oriented proximally.
Using the “Trochlear Groove” end of the Anterior Cut Stylus, adjust the height of resection such that the stylus touches the deepest point of the patient’s trochlea. The “Lateral Condyle” end of the Anterior Cut Stylus provides a secondary check to ensure the lateral aspect of the component does not overstuff the compartment. If the lateral condyle end of the stylus is sitting proud on the anterior aspect of the lateral trochlea, this is an indicator that the implant will overstuff the patellofemoral joint. Lower the saw capture to increase the resection level and, using an Angel Wing, verify that both an appropriate amount of bone is being removed and the flexion/extension position of the guide is appropriate. If the potential of notching is observed remove the anterior cut guide and replace with optional “flexion anterior cut guide”. Repeat steps to determine appropriate resection level with stylus. Once the position of the “saw capture” is deemed appropriate, make the anterior resection using a sagittal saw.

Femoral Preparation

Place the Distal/Proximal Stylus in the middle slot of the PF Finishing Guide and position the guide on the resected anterior femur with the Distal/Proximal Stylus flush against the notch. Evaluate the coverage of the guide on the anterior femur and in the deep trochlea, as the guide matches the associated implant. If the coverage of the selected guide is appropriate, with no overhang, pin the guide into place with the headed pins.

Patellofemoral Finishing Guide Selection and Placement
Select a Finishing Guide based on the anterior coverage of the Finishing Guide.
Femoral Reaming

Select a Reamer that matches the selected PF Finishing Guide. Place the Hole Saw in the distal hole in the guide and advance under power until the Hole Saw is fully seated. Repeat this step in the proximal reaming hole.

Femoral Finishing

The radii that were created in step 9 will be extended using the PF Blades, which are included in the disposables kit. Load the Blade Stabilizer that matches the size of the guide onto its handle and insert into the distal hole of the Finishing Guide, taking care to orient the stabilizer properly. Load the distal blade onto the Blade Handle. Orient the blade so the laser lines match the laser lines on the Finishing Guide and impact the blade into the slot until fully seated. Repeat this step on the other side.

Remove the Blade Stabilizer and insert it into the proximal reamer hole. Load the proximal blade onto the PF Blade Handle. Orient the blade so the laser lines match the laser lines on the Finishing Guide and impact the blade until fully seated. Repeat this step on the other side. Remove Stabilizer.

Load the middle blade onto the handle. Orient the blade so the laser line matches the laser line on the Finishing Guide and impact the blade into the middle slot until fully seated.
To complete the femoral prep, remove the Finishing Guide, select a Femoral Trial that matches the size of the guide and place onto the prepared femur. It should sit flush lateral in all planes. Pin the trial to the femur in the lateral hole. Attach the Peg Drill Stabilizer that matches the size of the trial to the Femoral Trial and pin into place. Drill the peg holes with the drill.

Final femoral preparation may optionally be performed following UKA preparation prior to cementation. Once satisfactory preparation of trochlear component is completed attention is can be turned to the tibiofemoral compartment.

Tibial Resection Depth

A single adjustable (0 mm – 10 mm) tibial stylus is available.

Note: The amount of tibial resection is dependent on amount of MCL laxity, more laxity requires less bone resection and less laxity could result in a larger resection. Caution must be taken to ensure over resection of the tibia does not occur.

Estimate the amount of MCL laxity in flexion, set the adjustable stylus to the appropriate amount of resection such that an 8 mm spacer block will fit into the resultant flexion space.

Slide the tibial stylus over the tibial resection guide as shown.

Adjust the resection height so that the stylus tip touches on the tibial plateau at the lowest point of the chondral defect. This is accomplished either by gross motion of the working height button or by fine motion by rotating the dial.

- Clockwise rotation will move the cutting guide down
- Counterclockwise rotation moves the cutting guide up
- One complete revolution creates 1 mm of travel

The stylus can then be removed from the cutting block. Should additional tibial bone need to be resected, slope or the fine height adjustment may easily be adjusted.
Vertical Tibial Cut

Use a reciprocating saw to perform the vertical tibial cut. Make the cut parallel to and located at the edge of the tibial eminence from the plateau to the level of the tibial cutting guide.

It is important to maximize lateralization of the vertical wall while avoiding damage to the ACL attachment. This will allow for maximum tibial component coverage.

The location and orientation of the vertical cut will directly influence the size and position of the tibial component. Proper attention to this detail is important.

Horizontal Tibial Cut

Ensure proper retraction is utilized to protect the collateral ligament. Use a 1.27 mm x 13 mm sagittal saw to perform the horizontal cut. Hold the saw blade flat against the surface of the tibial resection guide and take care not to allow the saw to undermine the tibial eminence. *Do not flex the blade.*

Remove the resected tibial plateau (this may be evaluated for accuracy in slope preservation and estimated tibial size).
Measure Flexion and Extension Space

Prior to assessing the gaps using the Spacer Blocks, remove all retractors and femoral osteophytes from the joint to ensure proper tensioning of the joint space. Measure and record the flexion and extension gaps using the Spacer Blocks.

Measure the flexion space by inserting the appropriate sized spacer block into the compartment with the leg in approximately 90° of flexion.

Measure the extension space by inserting the appropriate sized Spacer Block into the compartment with the leg in full extension (or as close as possible). Note: Varus/valgus alignment is assessed through the use of the offset alignment guide and drop rods applied to the Spacer Block handle. Care should be taken not to overstuff the compartment, resulting in overcorrected limb alignment.

Remove the Quick Connect Handle retaining the appropriate Spacer Block in extension.

Distal Femoral Cut

Choose the distal cutting block which will ensure a balanced composite space equal to that of the planned flexion space. Drop the cutting block onto the rails of the spacer block and pin into position. Note: It is important to avoid making the distal femoral cut in significant flexion or hyperextension.

Ensure proper retraction is utilized to protect the collateral ligament. Perform the distal femoral cut using a 1.27 mm x 13 mm sagittal saw. Note: Care should be taken to ensure distal femoral resection does not interfere with trochlear preparation. Increasing tibial resection should be evaluated in order to reduce distal femoral resection, if required.

Optional: Following distal femoral resection, the composite extension space may be checked to ensure proper alignment without overcorrection.
Move the knee back to a flexion position and insert the appropriate spacer block identified earlier. Choose the posterior cutting block which will ensure a composite flexion space equal to that of the extension space. Insert the cutting block onto the rails of the Spacer Block. Adjust flexion of the knee so that the posterior cutting block is flush to the distal femur and proximal tibia. Pin into position. Ensure proper retraction is utilized to protect the collateral ligament. Perform the posterior femoral cut using a 1.27 mm x 13 mm sagittal saw.

Once both the distal and posterior femoral cuts have been made, a composite block matching the overall planned composite space can be placed in both the flexion and extension spaces to ensure the gaps are indeed rectangular and the flexion and extension spaces are balanced. If it is determined the gaps are not balanced, satisfactory basic principles of gap balancing may be applied:

- Tight in flexion – resect more posterior femur
- Tight in extension – resect more distal femur
- Tight in flexion and extension – resect more tibia
Femoral sizing and final preparation is performed utilizing the Chamfer and Peg Guide.

With the knee in flexion, place the guide on the distal and posterior resections ensuring the guide is flush on each surface. The profile of each sized guide matches the profile of the corresponding femoral implant.

For a medial UKA, align the lateral aspect of the guide flush with the lateral aspect of the medial condyle. When properly sized, there should be a rim of 1 mm – 2 mm of exposed bone on the anterior and medial aspect of the distal resection. No overhang should be present.

Sizing for a lateral UKA is reversed. Align the medial aspect of the lateral condyle and size appropriately.

Once the guide is determined to be properly oriented, pin the guide in place.

Ensure proper retraction is utilized to protect the collateral ligament. Perform the chamfer cut utilizing a 1.27 mm x 13 mm sagittal saw. Create the anterior and posterior lug holes using the Femoral Step Drill.
Once the tibial and femoral cuts have been performed, use the D-ring tibial trials, tibial bearing trials and femoral component trials to assess the fit and position of the implants and the proper tensioning of the compartment.

In extension, the joint should be stable but not excessively tight as this can cause the contralateral compartment to be over-stressed. The correct tibial bearing thickness should allow the joint-space to open up 1 mm – 2 mm under varus/valgus stress.

In flexion, the joint space should also open up 1 mm to 2 mm under stress. Another indicator of excess tightness in flexion is if the tibial bearing trial lifts up anteriorly during flexion.

If it is determined the gaps are not equal or sufficient, refer to step 12.
Tibial sizing and final preparation is performed utilizing the Keel Punch and Peg Guide.

Choose the Tibial Sizing and Finishing Guide that matches the tibial trial used in the previous step. With the knee in flexion, place the guide on the proximal tibial resection. The profile of each sized guide matches the profile of the corresponding tibial implant. The tibia is sized independent of the prepared femoral size and the exposed tibial bone should be well covered, without overhang.

Optional: The vertical wall may be lateralized (in a medial UKA) slightly in order to utilize a larger component size if desired through the use of a provided dilating box rasp. Utilization of this rasp also eases insertion of poly-bearing component.

- There are multiple methods of primary and secondary fixation of the tibial preparation guide.
- Provisional fixation is achieved through spikes on the bottom of the tibial preparation guide.
- Primary fixation may be achieved by inserting a crosspin to fixate the device.
- Secondary fixation can be achieved either by removing the Quick Connect Handle and replacing it with the anterior stabilization buttress (a)
- or-
- Utilizing a lug stabilizer after the outermost lug is initially drilled prior to other preparation steps (b).

Tibial Sizing and Preparation

Use the tibial peg step drill to drill the two tibial peg holes. The drill bit can be removed in the medial hole to add support or a secondary fixation option (a or b) may be utilized.

Insert the Keel Punch into the designated slot on the Tibial Guide. Mallet the Keel Punch down into the tibial plateau until it stops. The Keel Punch should be impacted until the tip is flush with the guide.
Implantation

Tibial Component
The tibial component is implanted first. Apply cement to the backside of the component and manually place the tibial tray component onto the prepared tibia. Insert the keel of the tibial tray component into the prepared slot in the tibia, keeping the tibial tray parallel to the tibial resection and pushing the component from anterior to posterior and down into the prepared tibial surface at an angle of approximately 30°. Finish seating the tibial tray component using the tibial tray impactor. Remove excess cement from around the component using the Cement Removal Tool.

Optional: Time permitting insertion of a provisional tibial bearing prior to femoral component insertion can be beneficial to ensure ease of insertion of final polyethylene implant.

Femoral Component
The femoral component is implanted with the leg in deep flexion. Apply cement to the entire backside of the component and insert the component manually. Finish seating the femoral component using the femoral impactor. Remove excess cement from around the component using the Cement Removal Tool.

Tibial Polyethylene
Determine the final thickness of the tibial bearing component by using a tibial bearing trial placed in the definitive tibial tray component. As described previously in the “Trial Reduction” section, the correct tibial bearing thickness should allow the joint space to open up 1–2 mm under varus/valgus stress (in both flexion and extension). Leave the appropriate trial bearing (or one thickness larger) in place to maintain pressure on the femoral and tibial tray components while the cement is curing. The tibial bearing implant is inserted after the cement has fully cured. Remove the tibial bearing trial using the tibial bearing trial puller instrument. Insert the final tibial bearing component into the tibial tray component anteriorly, with the articulating surface facing the femoral component. Slide the tibial bearing component posteriorly until the posterior slot on the bearing engages the posterior lip on the tibial tray. Push the anterior edge of the tibial bearing down into the tibial tray component using thumb pressure until it snaps into place.

Note: There is a 5° clearance built into the tibial bearing to allow for ease of insertion. It is normal for there to be a small gap in between the tibial bearing and the implant, once the bearing is fully seated.
Tibial Bearing Sizing

<table>
<thead>
<tr>
<th>Size</th>
<th>M/L</th>
<th>A/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>22.75</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>24.25</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>25.5</td>
<td>52</td>
</tr>
<tr>
<td>6</td>
<td>26.5</td>
<td>54</td>
</tr>
</tbody>
</table>

Femoral Component Sizing

<table>
<thead>
<tr>
<th>M/L</th>
<th>A/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size 1</td>
<td>19 mm</td>
</tr>
<tr>
<td>Size 2</td>
<td>21 mm</td>
</tr>
<tr>
<td>Size 3</td>
<td>22.75 mm</td>
</tr>
<tr>
<td>Size 4</td>
<td>24.25 mm</td>
</tr>
<tr>
<td>Size 5</td>
<td>25.5 mm</td>
</tr>
<tr>
<td>Size 6</td>
<td>26.5 mm</td>
</tr>
</tbody>
</table>

Polyethylene Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Size 1</th>
<th>Size 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tibial Bearing</td>
<td>14 mm</td>
<td>26.5 mm</td>
</tr>
<tr>
<td>Tibial Bearing</td>
<td>12 mm</td>
<td>25.5 mm</td>
</tr>
<tr>
<td>Tibial Bearing</td>
<td>11 mm</td>
<td>24.25 mm</td>
</tr>
<tr>
<td>Tibial Bearing</td>
<td>10 mm</td>
<td>23 mm</td>
</tr>
<tr>
<td>Tibial Bearing</td>
<td>9 mm</td>
<td>21 mm</td>
</tr>
<tr>
<td>Tibial Bearing</td>
<td>8 mm</td>
<td>19 mm</td>
</tr>
</tbody>
</table>

Ordering Information - UKA Implants

Femoral Components

- Femoral Component, size 1, LM: AR-501-UFLA
- Femoral Component, size 2, LM: AR-501-UFLB
- Femoral Component, size 3, LM: AR-501-UFLC
- Femoral Component, size 4, LM: AR-501-UFLD
- Femoral Component, size 5, LM: AR-501-UFLE
- Femoral Component, size 6, LM: AR-501-UFLF
- Femoral Component, size 1, RM: AR-501-UFRM
- Femoral Component, size 2, RM: AR-501-UFRB
- Femoral Component, size 3, RM: AR-501-UFRC
- Femoral Component, size 4, RM: AR-501-UFRD
- Femoral Component, size 5, RM: AR-501-UFRE
- Femoral Component, size 6, RM: AR-501-UFRF

Tibial Components

- Tibial Tray Component, size 1, LM: AR-501-TTRA
- Tibial Tray Component, size 2, LM: AR-501-TTRB
- Tibial Tray Component, size 3, RM: AR-501-TTRC
- Tibial Tray Component, size 4, RM: AR-501-TTRD
- Tibial Tray Component, size 5, RM: AR-501-TTRE
- Tibial Tray Component, size 6, RM: AR-501-TTRF

Polyethylene Components

- Tibial Bearing, size 1, 8 mm: AR-501-TBA8
- Tibial Bearing, size 1, 9 mm: AR-501-TBA9
- Tibial Bearing, size 1, 10 mm: AR-501-TBA0
- Tibial Bearing, size 1, 11 mm: AR-501-TBA1
- Tibial Bearing, size 1, 12 mm: AR-501-TBA2
- Tibial Bearing, size 1, 14 mm: AR-501-TBA4
- Tibial Bearing, size 2, 8 mm: AR-501-TBB8
- Tibial Bearing, size 2, 9 mm: AR-501-TBB9
- Tibial Bearing, size 2, 10 mm: AR-501-TBB0
- Tibial Bearing, size 2, 11 mm: AR-501-TBB1
- Tibial Bearing, size 2, 12 mm: AR-501-TBB2
- Tibial Bearing, size 2, 14 mm: AR-501-TBB4
- Tibial Bearing, size 3, 8 mm: AR-501-TBC8
- Tibial Bearing, size 3, 9 mm: AR-501-TBC9
- Tibial Bearing, size 3, 10 mm: AR-501-TBC0
- Tibial Bearing, size 3, 11 mm: AR-501-TBC1
- Tibial Bearing, size 3, 12 mm: AR-501-TBC2
- Tibial Bearing, size 3, 14 mm: AR-501-TBC4
- Tibial Bearing, size 4, 8 mm: AR-501-TBD8
- Tibial Bearing, size 4, 9 mm: AR-501-TBD9
- Tibial Bearing, size 4, 10 mm: AR-501-TBD0
- Tibial Bearing, size 4, 11 mm: AR-501-TBD1
- Tibial Bearing, size 4, 12 mm: AR-501-TBD2
- Tibial Bearing, size 4, 14 mm: AR-501-TBD4
- Tibial Bearing, size 5, 8 mm: AR-501-TBE8
- Tibial Bearing, size 5, 9 mm: AR-501-TBE9
- Tibial Bearing, size 5, 10 mm: AR-501-TBE0
- Tibial Bearing, size 5, 11 mm: AR-501-TBE1
- Tibial Bearing, size 5, 12 mm: AR-501-TBE2
- Tibial Bearing, size 5, 14 mm: AR-501-TBE4
- Tibial Bearing, size 6, 8 mm: AR-501-TBF8
- Tibial Bearing, size 6, 9 mm: AR-501-TBF9
- Tibial Bearing, size 6, 10 mm: AR-501-TBF0
- Tibial Bearing, size 6, 11 mm: AR-501-TBF1
- Tibial Bearing, size 6, 12 mm: AR-501-TBF2
- Tibial Bearing, size 6, 14 mm: AR-501-TBF4

Polyethylene Components, Vitamin E

- Tibial Bearing, size 1, 8 mm, Vit-E: AR-521-TBA8
- Tibial Bearing, size 1, 9 mm, Vit-E: AR-521-TBA9
- Tibial Bearing, size 1, 10 mm, Vit-E: AR-521-TBA0
- Tibial Bearing, size 1, 11 mm, Vit-E: AR-521-TBA1
- Tibial Bearing, size 1, 12 mm, Vit-E: AR-521-TBA2
- Tibial Bearing, size 1, 14 mm, Vit-E: AR-521-TBA4
- Tibial Bearing, size 2, 8 mm, Vit-E: AR-521-TBB8
- Tibial Bearing, size 2, 9 mm, Vit-E: AR-521-TBB9
- Tibial Bearing, size 2, 10 mm, Vit-E: AR-521-TBB0
- Tibial Bearing, size 2, 11 mm, Vit-E: AR-521-TBB1
- Tibial Bearing, size 2, 12 mm, Vit-E: AR-521-TBB2
- Tibial Bearing, size 2, 14 mm, Vit-E: AR-521-TBB4
- Tibial Bearing, size 3, 8 mm, Vit-E: AR-521-TBC8
- Tibial Bearing, size 3, 9 mm, Vit-E: AR-521-TBC9
- Tibial Bearing, size 3, 10 mm, Vit-E: AR-521-TBC0
- Tibial Bearing, size 3, 11 mm, Vit-E: AR-521-TBC1
- Tibial Bearing, size 3, 12 mm, Vit-E: AR-521-TBC2
- Tibial Bearing, size 3, 14 mm, Vit-E: AR-521-TBC4
- Tibial Bearing, size 4, 8 mm, Vit-E: AR-521-TBD8
- Tibial Bearing, size 4, 9 mm, Vit-E: AR-521-TBD9
- Tibial Bearing, size 4, 10 mm, Vit-E: AR-521-TBD0
- Tibial Bearing, size 4, 11 mm, Vit-E: AR-521-TBD1
- Tibial Bearing, size 4, 12 mm, Vit-E: AR-521-TBD2
- Tibial Bearing, size 4, 14 mm, Vit-E: AR-521-TBD4
- Tibial Bearing, size 5, 8 mm, Vit-E: AR-521-TBE8
- Tibial Bearing, size 5, 9 mm, Vit-E: AR-521-TBE9
- Tibial Bearing, size 5, 10 mm, Vit-E: AR-521-TBE0
- Tibial Bearing, size 5, 11 mm, Vit-E: AR-521-TBE1
- Tibial Bearing, size 5, 12 mm, Vit-E: AR-521-TBE2
- Tibial Bearing, size 5, 14 mm, Vit-E: AR-521-TBE4
- Tibial Bearing, size 6, 8 mm, Vit-E: AR-521-TBF8
- Tibial Bearing, size 6, 9 mm, Vit-E: AR-521-TBF9
- Tibial Bearing, size 6, 10 mm, Vit-E: AR-521-TBF0
- Tibial Bearing, size 6, 11 mm, Vit-E: AR-521-TBF1
- Tibial Bearing, size 6, 12 mm, Vit-E: AR-521-TBF2
- Tibial Bearing, size 6, 14 mm, Vit-E: AR-521-TBF4
iBalance® UKA Instrumentation Set (AR-611-S)

- Pin and Spacer Block Caddies
- Quick Connect Handle - AR-611-8
- Distal Cutting Block - AR-611-DR06
- Posterior Cutting Block - AR-611-PR08
- Tibial Finishing Guide - AR-611-TR4
- Distal Cutting Block - AR-611-DR06
<table>
<thead>
<tr>
<th>Item Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>iBalance UKA, General Prep Case</td>
<td>AR-611-C1</td>
</tr>
<tr>
<td>EM Tibial Guide, proximal body</td>
<td>AR-623-30</td>
</tr>
<tr>
<td>EM Tibial Guide, short distal body</td>
<td>AR-623-31</td>
</tr>
<tr>
<td>EM Tibial Guide, long distal body</td>
<td>AR-623-32</td>
</tr>
<tr>
<td>EM Tibial Guide Ankle Clamp</td>
<td>AR-623-33</td>
</tr>
<tr>
<td>TKA Tibial Stylus, adjustable</td>
<td>AR-623-35</td>
</tr>
<tr>
<td>Alignment Drop Rod Offset Attachment</td>
<td>AR-611-1</td>
</tr>
<tr>
<td>Alignment Drop Rod w/Sleeve, 3/16" X 18"</td>
<td>AR-611-2</td>
</tr>
<tr>
<td>Cement Removal Tool</td>
<td>AR-611-3</td>
</tr>
<tr>
<td>iBalance UKA Tibial Impactor</td>
<td>AR-611-4</td>
</tr>
<tr>
<td>iBalance UKA Tibial Fixation Buttress</td>
<td>AR-611-5</td>
</tr>
<tr>
<td>iBalance UKA Femoral Impactor</td>
<td>AR-611-6</td>
</tr>
<tr>
<td>iBalance UKA Tibial Trialing Shim, 2/3 mm</td>
<td>AR-611-7</td>
</tr>
<tr>
<td>Quick Connect Handle, short</td>
<td>AR-611-8</td>
</tr>
<tr>
<td>iBalance UKA Tibial Keel Punch</td>
<td>AR-611-9</td>
</tr>
<tr>
<td>iBalance UKA Tibial Peg Drill, ø290</td>
<td>AR-611-10</td>
</tr>
<tr>
<td>iBalance UKA Femoral Peg Drill, ø260</td>
<td>AR-611-11</td>
</tr>
<tr>
<td>iBalance UKA Tibial Lug Hole Stabilizer</td>
<td>AR-611-12</td>
</tr>
<tr>
<td>iBalance UKA Tibia Trialing Shim, 4/5 mm</td>
<td>AR-611-13</td>
</tr>
<tr>
<td>iBalance UKA Component Sizing Guide</td>
<td>AR-611-14</td>
</tr>
<tr>
<td>Headed Threaded Pin, short</td>
<td>AR-611-15</td>
</tr>
<tr>
<td>Pin Caddy</td>
<td>AR-611-16</td>
</tr>
<tr>
<td>UKA Tibial Stylus, adjustable</td>
<td>AR-611-17</td>
</tr>
<tr>
<td>iBalance TKA Trocar Pin, smooth</td>
<td>AR-613-50</td>
</tr>
<tr>
<td>iBalance UKA Bone Caliper</td>
<td>AR-602-48</td>
</tr>
<tr>
<td>Meniscal Allograft Dilating Rasp, slot</td>
<td>AR-2963BR</td>
</tr>
<tr>
<td>iBalance UKA Headless Pin Driver Assembly 1/8" Pins</td>
<td>AR-613-91</td>
</tr>
<tr>
<td>Alignment Drop Rod</td>
<td>AR-601-AR00</td>
</tr>
<tr>
<td>Angel Wing, narrow body</td>
<td>AR-623-76</td>
</tr>
<tr>
<td>iBalance UKA Spacer Block Caddy, 11-space</td>
<td>AR-611-C3</td>
</tr>
<tr>
<td>iBalance UKA Spacer Block, 6 mm</td>
<td>AR-611-SB06</td>
</tr>
<tr>
<td>iBalance UKA Spacer Block, 7 mm</td>
<td>AR-611-SB07</td>
</tr>
<tr>
<td>iBalance UKA Spacer Block, 8 mm</td>
<td>AR-611-SB08</td>
</tr>
<tr>
<td>iBalance UKA Spacer Block, 9 mm</td>
<td>AR-611-SB09</td>
</tr>
<tr>
<td>iBalance UKA Spacer Block, 10 mm</td>
<td>AR-611-SB10</td>
</tr>
<tr>
<td>iBalance UKA Spacer Block, 15 mm</td>
<td>AR-611-SB15</td>
</tr>
<tr>
<td>iBalance UKA Spacer Block, 16 mm</td>
<td>AR-611-SB16</td>
</tr>
<tr>
<td>iBalance UKA Spacer Block, 17 mm</td>
<td>AR-611-SB17</td>
</tr>
<tr>
<td>iBalance UKA Spacer Block, 18 mm</td>
<td>AR-611-SB18</td>
</tr>
<tr>
<td>iBalance UKA Modular Spacer Block, 5 mm & 10 mm</td>
<td>AR-611-SM05 & 10</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial size 1, 10 mm</td>
<td>AR-611-TBA0</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 1, 11 mm</td>
<td>AR-610-TBA1</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 1, 12 mm</td>
<td>AR-610-TBA2</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 1, 14 mm</td>
<td>AR-610-TBA3</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 1, 8 mm</td>
<td>AR-610-TBA4</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 1, 9 mm</td>
<td>AR-610-TBA5</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 2, 10 mm</td>
<td>AR-610-TBB0</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 2, 11 mm</td>
<td>AR-610-TBB1</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 2, 12 mm</td>
<td>AR-610-TBB2</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 2, 14 mm</td>
<td>AR-610-TBB3</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 2, 8 mm</td>
<td>AR-610-TBB4</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 2, 9 mm</td>
<td>AR-610-TBB5</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 3, 10 mm</td>
<td>AR-610-TBB6</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 3, 11 mm</td>
<td>AR-610-TBB7</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 3, 12 mm</td>
<td>AR-610-TBB8</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 3, 14 mm</td>
<td>AR-610-TBB9</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 3, 8 mm</td>
<td>AR-610-TBC0</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 3, 9 mm</td>
<td>AR-610-TBC1</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 3, 12 mm</td>
<td>AR-610-TBC2</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 3, 14 mm</td>
<td>AR-610-TBC3</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 3, 8 mm</td>
<td>AR-610-TBC4</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 3, 9 mm</td>
<td>AR-610-TBC5</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 4, 10 mm</td>
<td>AR-610-TBD0</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 4, 11 mm</td>
<td>AR-610-TBD1</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 4, 12 mm</td>
<td>AR-610-TBD2</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 4, 14 mm</td>
<td>AR-610-TBD3</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 4, 8 mm</td>
<td>AR-610-TBD4</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 4, 9 mm</td>
<td>AR-610-TBD5</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 5, 10 mm</td>
<td>AR-610-TBE0</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 5, 11 mm</td>
<td>AR-610-TBE1</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 5, 12 mm</td>
<td>AR-610-TBE2</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 5, 14 mm</td>
<td>AR-610-TBE3</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 5, 8 mm</td>
<td>AR-610-TBE4</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 5, 9 mm</td>
<td>AR-610-TBE5</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 6, 10 mm</td>
<td>AR-610-TBF0</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 6, 11 mm</td>
<td>AR-610-TBF1</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 6, 12 mm</td>
<td>AR-610-TBF2</td>
</tr>
<tr>
<td>iBalance UKA Tibial Bearing Trial, size 6, 14 mm</td>
<td>AR-610-TBF3</td>
</tr>
</tbody>
</table>
iBalance UKA Tibial Bearing Trial, size 6, 8 mm AR-601-TBF8
iBalance UKA Tibial Bearing Trial, size 6, 9 mm AR-601-TBF9
iBalance UKA Tibial Bearing Puller AR-601-TBP0
iBalance UKA Base Plate Trial, sizes 1 – 6 AR-601-TBP1 – TBP6
iBalance UKA, Side Specific Shell AR-611-C2
iBalance UKA RM/LL Instrument Case AR-611-C2R
iBalance UKA, Femoral Finish Guide, size 1, RM/LL AR-611-CL1
iBalance UKA, Femoral Finish Guide, size 2, RM/LL AR-611-CL2
iBalance UKA, Femoral Finish Guide, size 4, RM/LL AR-611-CL4
iBalance UKA, Femoral Finish Guide, size 5, RM/LL AR-611-CL5
iBalance UKA, Femoral Finish Guide, size 6, RM/LL AR-611-CL6
iBalance UKA, Femoral Finish Guide, size 6, RM/LL AR-611-CL6
iBalance UKA, RM/LL Distal Cut Block, 4 mm – 10 mm AR-611-DR04 – DR10
iBalance UKA, Femoral Trial, size 1, RM/LL AR-601-FTRA
iBalance UKA, Femoral Trial, size 2, RM/LL AR-601-FTRB
iBalance UKA, Femoral Trial, size 3, RM/LL AR-601-FTRC
iBalance UKA, Femoral Trial, size 4, RM/LL AR-601-FTRD
iBalance UKA, Femoral Trial, size 5, RM/LL AR-601-FTRE
iBalance UKA, Femoral Trial, size 6, RM/LL AR-601-FTRF
iBalance UKA, RM/LL Distal Cut Block, 3 mm – 10 mm AR-611-DR03 – DR10
iBalance UKA, Finishing Guide, size 1, RM/LL AR-611-TR1
iBalance UKA Tibial Finish Guide, size 2, RM/LL AR-611-TR2
iBalance UKA Tibial Finish Guide, size 3, RM/LL AR-611-TR3
iBalance UKA Tibial Finish Guide, size 4, RM/LL AR-611-TR4
iBalance UKA Tibial Finish Guide, size 5, RM/LL AR-611-TR5
iBalance UKA Tibial Finish Guide, size 6, RM/LL AR-611-TR6
iBalance UKA Tibial Cut Guide, right AR-611-TRRM
iBalance UKA Vertical Cut Guide, right AR-611-TRLV
iBalance UKA LM/RL Instrument Case AR-611-C2L
iBalance UKA Femoral Finish Guide, size 1, LM/RL AR-611-CL1
iBalance UKA Femoral Finish Guide, size 2, LM/RL AR-611-CL2
iBalance UKA Femoral Finish Guide, size 4, LM/RL AR-611-CL4
iBalance UKA Femoral Finish Guide, size 6, LM/RL AR-611-CL6
iBalance UKA LM/RL Distal Cut Block, 4 mm – 10 mm AR-611-DR04 – DL10
iBalance UKA Femoral Trial, size 1, LM/RL AR-601-FTLA
iBalance UKA Femoral Trial, size 2, LM/RL AR-601-FTLB
iBalance UKA Femoral Trial, size 3, LM/RL AR-601-FTLC
iBalance UKA Femoral Trial, size 4, LM/RL AR-601-FTLD
iBalance UKA Femoral Trial, size 5, LM/RL AR-601-FTLE
iBalance UKA Femoral Trial, size 6, LM/RL AR-601-FTLF
iBalance UKA LM/RL Distal Cut Block, 3 mm – 10 mm AR-611-DR03 – PL10
iBalance UKA Tibial Finish Guide, size 1, LM/RL AR-611-TL1
iBalance UKA Tibial Finish Guide, size 2, LM/RL AR-611-TL2
iBalance UKA Tibial Finish Guide, size 4, LM/RL AR-611-TL4
iBalance UKA Tibial Finish Guide, size 6, LM/RL AR-611-TL6
iBalance UKA Tibial Cut Guide, left AR-611-TLVM
iBalance UKA Vertical Cut Guide, left AR-611-TRLV

Optional Spacer Block Organization (AR-611-SC2)

iBalance UKA Spacer Block Caddy, 12-space AR-611-C4
iBalance UKA Spacer Block, 8 mm AR-611-SB08
iBalance UKA Spacer Block, 9 mm AR-611-SB09
iBalance UKA Spacer Block, 10 mm AR-611-SB10
iBalance UKA Spacer Block, 11 mm AR-611-SB11
iBalance UKA Spacer Block, 12 mm AR-611-SB12
iBalance UKA Spacer Block, 14 mm AR-611-SB14
iBalance UKA Spacer Block, 15 mm AR-611-SB15
iBalance UKA Spacer Block, 16 mm AR-611-SB16
iBalance UKA Spacer Block, 17 mm AR-611-SB17
iBalance UKA Spacer Block, 18 mm AR-611-SB18
iBalance UKA Spacer Block, 19 mm AR-611-SB19
iBalance UKA Spacer Block, 21 mm AR-611-SB21

Optional Instruments

iBalance UKA Tibial Fixation Buttress AR-611-5
iBalance UKA Tibial Trialing Shim, 2/3 mm AR-611-7
iBalance UKA Tibia Trialing Shim, 4/5 mm AR-611-13
iBalance UKA Femoral Peg Drill, ø.312 AR-601-FPDO
iBalance UKA Tibial Peg Drill, ø.312 AR-601-TPDO
iBalance UKA Tibial Trial Handle AR-611-18
EM Tibial Guide, long distal body AR-623-32
iBalance PFJ Instrument Set (AR-602-S) includes

Anterior Cortex Alignment Guide AR-602-5
IM Drill AR-602-6
Anterior Cut Guide Base, left AR-602-8L
Anterior Cut Guide Base, right AR-602-8R
Anterior Cut Guide AR-602-9
Anterior Cut Stylus AR-602-10
Quick Connect Handle AR-613-8
Finishing Guide, size 1 AR-602-11
Finishing Guide, size 2 AR-602-12
Finishing Guide, size 3 AR-602-13
Finishing Guide, size 4 AR-602-14
Distal/Proximal Stylus AR-602-15
Hole Saw, size 1 AR-602-16
Hole Saw, size 2 AR-602-17
Hole Saw, size 3 AR-602-18
Hole Saw, size 4 AR-602-19
Blade Stabilizer, size 1 AR-602-20
Blade Stabilizer, size 2 AR-602-21
Blade Stabilizer, size 3 AR-602-22
Blade Stabilizer, size 4 AR-602-23
Hole Saw, qty. 2 AR-602-24
Femoral Trial, size 1, left AR-602-1L
Femoral Trial, size 1, right AR-602-1R
Femoral Trial, size 2, left AR-602-2L
Femoral Trial, size 2, right AR-602-2R
Femoral Trial, size 3, left AR-602-3L
Femoral Trial, size 3, right AR-602-3R
Femoral Trial, size 4, left AR-602-4L
Femoral Trial, size 4, right AR-602-4R
Femoral Peg Drill AR-602-42
Threads to Anterior Cut Guide AR-602-52
Alignment Rod, qty. 2 AR-602-1AR00
Threaded Pin, Headed, qty. 4 AR-602-44
Fixation Pin, qty. 4 AR-602-44Fp40
Fixation Pin, qty. 4 AR-602-85
Femoral Impactor Head AR-602-85
Universal Impactor Handle AR-602-85
Angel Wing AR-602-86
Pellara Drill Guide, 27 mm AR-602-87
Pellara Drill Guide, 30 mm AR-602-88
Pellara Drill Guide, 34 mm AR-602-89
Pellara Drill Guide, 37 mm AR-602-90
Pellara Drill Guide, 37 mm AR-602-90
Pellara Drill Guide, 37 mm AR-602-90
Pellara Cement Clamp AR-602-91
Pellara Calipers AR-602-92
Pellara Peg Drill AR-602-93
Dome Patella Trial, Size 27, 8 mm AR-603-77
Dome Patella Trial, Size 30, 8 mm AR-603-79
Dome Patella Trial, Size 34, 9 mm AR-603-81
Dome Patella Trial, Size 37, 10 mm AR-603-83
Pegged Femoral Trial, Size 1, left AR-602-50
Pegged Femoral Trial, Size 1, right AR-602-51
Pegged Femoral Trial, Size 2, left AR-602-52
Pegged Femoral Trial, Size 2, right AR-602-53
Pegged Femoral Trial, Size 3, left AR-602-54
Pegged Femoral Trial, Size 3, right AR-602-55
Pegged Femoral Trial, Size 4, left AR-602-56
Pegged Femoral Trial, Size 4, right AR-602-57
iBalance PFJ Instrument Case AR-602-C

Ordering information for PFJ is continued on the back
iBalance PFJ Finishing Blades

(each kit includes three blades – Distal, Middle and Proximal)

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finishing Blades, size 1, qty. 1</td>
<td>AR-602-26</td>
</tr>
<tr>
<td>Finishing Blades, size 1, qty. 10</td>
<td>AR-602-26L</td>
</tr>
<tr>
<td>Finishing Blades, size 2, qty. 1</td>
<td>AR-602-27</td>
</tr>
<tr>
<td>Finishing Blades, size 2, qty. 10</td>
<td>AR-602-27L</td>
</tr>
<tr>
<td>Finishing Blades, size 3, qty. 1</td>
<td>AR-602-28</td>
</tr>
<tr>
<td>Finishing Blades, size 3, qty. 10</td>
<td>AR-602-28L</td>
</tr>
<tr>
<td>Finishing Blades, size 4, qty. 1</td>
<td>AR-602-29</td>
</tr>
<tr>
<td>Finishing Blades, size 4, qty. 10</td>
<td>AR-602-29L</td>
</tr>
</tbody>
</table>

Implants

Trochlear Components:

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>iBalance Patellofemoral Implant, size 1, left</td>
<td>AR-502-1L</td>
</tr>
<tr>
<td>iBalance Patellofemoral Implant, size 2, left</td>
<td>AR-502-2L</td>
</tr>
<tr>
<td>iBalance Patellofemoral Implant, size 3, left</td>
<td>AR-502-3L</td>
</tr>
<tr>
<td>iBalance Patellofemoral Implant, size 4, left</td>
<td>AR-502-4L</td>
</tr>
<tr>
<td>iBalance Patellofemoral Implant, size 1, right</td>
<td>AR-502-1R</td>
</tr>
<tr>
<td>iBalance Patellofemoral Implant, size 2, right</td>
<td>AR-502-2R</td>
</tr>
<tr>
<td>iBalance Patellofemoral Implant, size 3, right</td>
<td>AR-502-3R</td>
</tr>
<tr>
<td>iBalance Patellofemoral Implant, size 4, right</td>
<td>AR-502-4R</td>
</tr>
</tbody>
</table>

Patellar Components:

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>iBalance Patella Implant Dome, 27 mm x 8 mm</td>
<td>AR-504-PSA8</td>
</tr>
<tr>
<td>iBalance Patella Implant Dome, 30 mm x 8 mm</td>
<td>AR-504-PSB8</td>
</tr>
<tr>
<td>iBalance Patella Implant Dome, 34 mm x 9 mm</td>
<td>AR-504-PSC9</td>
</tr>
<tr>
<td>iBalance Patella Implant Dome, 37 mm x 10 mm</td>
<td>AR-504-PSD0</td>
</tr>
</tbody>
</table>

This description of technique is provided as an educational tool and clinical aid to assist properly licensed medical professionals in the usage of specific Arthrex products. As part of this professional usage, the medical professional must use their professional judgment in making any final determinations in product usage and technique. In doing so, the medical professional should rely on their own training and experience and should conduct a thorough review of pertinent medical literature and the product’s Directions For Use.

View U.S. patent information at www.arthrex.com/corporate/virtual-patent-marking

©2016, Arthrex, Inc. All rights reserved. LTI-00050-EN_A