Faculty Forum
Virtual Roundtable

Moderator
Luke Circhinelli, DPM
Palo Alto Medical Foundation
Mountain View, AZ

Participating Panelists
Naohiro Shibuya, DPM
Baylor Scott & White Health
Temple, TX

Nicholas Todd, DPM
Palo Alto Medical Foundation
Mountain View, CA

Justin Fleming, DPM
Aria 3B Orthopaedic Institute
Philadelphia, PA

Mark Hardy, DPM
Northern Ohio Foot and Ankle Foundation
Avon, OH
In an effort to address the concerns and limitations of traditional Brostrom repairs, Arthrex® organized a faculty forum virtual roundtable with thought leaders discussing their experiences with *Internal Brace™* ligament augmentation repair for lateral ankle instability.

reference:
Why have Brostroms been considered the gold standard when some of the literature indicates that patients have to step down in their activities? Shouldn’t this be considered a failure or complication?

Dr. Cicchinelli
An often overlooked and underemphasized functional outcome measure is the return to desired activity level. The AJSM article speaks to that. It isn’t necessarily enough that patients get back to some activity; they would like to resume what they previously enjoyed. So this is, in a sense, a failure of an ideal and full recovery, not a complication.

Dr. Fleming
I think the paper by Mafulli demonstrates the significance of ankle instability in quality of life regarding inability to return to activity, concerns about future injuries and the association between ankle instability and ankle arthritis. I think this is a failure of their technique. I would say that their results are in line with what I experienced in my patients prior to the implementation of the InternalBrace™ ligament augmentation.

Why do you feel it is important to utilize InternalBrace ligament augmentation to augment your Brostrom procedure?

Dr. Fleming
Clearly, the biggest advantage is the strength that it provides. The increase in mechanical strength of the repair increases the durability, and decreases the failure rate. The InternalBrace ligament augmentation not only strengthens the initial repair but protects the soft tissues until they reach the necessary maturity.

Dr. Hardy
It provides me the assurance of knowing my primary Brostrom repair is protected; thus, allowing the ability to return these patients to pre-injury form.

Dr. Shibuya
Many patients have hyper flexible soft tissue that can result in stretching of the repaired ligament and loss of correction. Many don’t recognize this because many patients can become less active after surgery. But, if you want to keep your patients active, this phenomenon is important to recognize. InternalBrace ligament augmentation allows bone-to-bone anchoring to achieve stability independent of soft tissue integrity.

What are your concerns with current Brostrom repairs?

Dr. Hardy
Attenuation of the repair. There may be biomechanical and connective tissue contributions to the instability which causes me to protect these patients longer post Brostrom; however, use of the InternalBrace ligament augmentation limits if not alleviates those concerns.

Dr. Shibuya
Some patients are too flexible or do not possess good soft tissue to be repaired; therefore, we have to assume or rely on good soft tissue integrity.

Dr. Todd
I have two concerns with the current Brostrom repair. My first concern is with patients with ligamentous laxity disorders. Most of these patients have very poor tissue, which makes the repair weak and destined to fail. Second, with the athletes that I treat, the standard Brostrom requires an extended period of immobilization/non-weightbearing. With long periods of non-weightbearing this requires a significant amount of time away from their sport. Tissue quality in one’s repair is the single most important factor. If the tissue is poor the repair is bound to fail.

The InternalBrace ligament augmentation not only strengthens the initial repair but protects the soft tissues until they reach the necessary maturity.

-Dr. Fleming

SwiveLock anchor cannulation and vents allow blood and bone marrow flow through the anchor.

Please scan QR code for SwiveLock® anchor video showing blood and bone marrow flow through the anchor.
What compelled you to use the InternalBrace™ construct to augment your Brostroms?

Dr. Cicchinelli
I believe in the anatomy as the basis of pathology and the basis of the repair of pathoanatomy. Ligaments connect bone to bone. The InternalBrace ligament augmentation recreates the true anatomic footprint of the natural anatomy. We can’t get any closer than that anatomically speaking to the original pre-injury state.

Dr. Fleming
I never had a great sense of security on the table with the Brostrom. The tissue quality is generally subpar and achieving secure fixation has always been challenging. I feel that the Brostrom repair loosens over time, which is problematic for everyone, but especially for the young athlete. And lastly, I wanted to find a substitute for the allograft reconstructions that we were doing. I struggle with achieving equal tension on both limbs of the repair and occasionally they will stretch out for various reasons. A modified InternalBrace ligament augmentation has drastically reduced the number of allograft stabilizations that we perform.

Dr. Hardy
I first started using it in spring ligament repairs/augmentation and quickly saw its utility in framing around other soft tissue repairs.

Dr. Todd
When examining their surgical failures/recurrences a surgeon will always look for alternatives. Poor tissue quality led to recurrence and multiple procedures that required large surgical exposure and extended immobilization. I used an InternalBrace ligament augmentation on an Ehlers Danlos patient with severe laxity; this patient was able to ambulate two weeks following surgery and has had no recurrence in over one year.

We often hear “I never met a Brostrom that needed augmentation” or “My Brostroms all do fine”. Knowing the clinical value, what would your response to those conversations?

Dr. Cicchinelli
In our health care climate once folks are healed and basically doing ok they disappear. It isn’t user friendly to call them all back in for a long-term follow-up such as 1-3 years or 7-10 years. As the ASJM article reports, not all patients are back to doing what they would like based on the Brostrom alone.

The patient is still exhibiting mechanical instability but their symptoms have resolved. Long term stability is crucial to the health and maintenance of the ankle joint, and I believe the traditional Brostrom cannot consistently provide this.

Dr. Hardy
Never say never or always. We should constantly be evaluating our results and listening to our patients. In some patients, where marked hypermobility exists, a traditional Brostrom will be inadequate.

Dr. Shibuya
“All do fine” is a relative term. Every time surgeons get into this type of discussion, regardless of a surgical procedure, each surgeon is often talking about a different thing. To some surgeons, casting for six weeks is “fine” while others won’t call it a success unless the patient gets back to normal activity within six weeks. Some may not feel “fine” unless the procedure lasts for more than five years while some don’t even follow up with the patients for more than three months. Some feel that a failure after noncompliance is on patients while others feel that it is part of unfavorable outcomes.

“The InternalBrace ligament augmentation recreates the true anatomic footprint of the natural anatomy. We can’t get any closer than that anatomically speaking to the original pre-injury state.”

-Dr. Cicchinelli

Dr. Todd
I was one who would often say these exact words. The standard Brostrom can be effective but there are circumstances where it will fail. The ease and reproducibility of the InternalBrace ligament augmentation have allowed me to treat patients who would need a larger exposure. The Brostrom is a great procedure but the InternalBrace ligament augmentation improves outcomes when recurrence is a concern.
It is understood that this procedure is relatively new with limited, long term clinical follow up. Can you comment on the outcomes and your experience with your patients you have treated? Please explain the difference between standard Brostrom repair and those that have InternalBrace™ ligament augmentation repair?

Dr. Cicchinelli
The difference is in the security of repair at time 0, leaving the OR, that allows confidence in advancing the rehab which in turn discouages all sorts of post immobilization deleterious effects on the lower extremity muscles, tendons, and all soft tissues. Essentially disuse disease is avoided.

Dr. Shibuya
For high-level athletes, non-compliant patients, heavy patients, those with chronic instability with significant loss of proprioception, the InternalBrace ligament augmentation can “protect” the Brostrom while the soft tissue is being healed and reorganized.

What have been the most positive effects of the InternalBrace ligament augmentation for your patients?

Dr. Shibuya
It can protect the Brostrom repair if a patient has an incident, such as fall or non-compliance during the postoperative period.

Surgeons often speak of clinical studies before trying something new. Why try the InternalBrace ligament augmentation now? What are the minimum expectations you have?

Dr. Cicchinelli
The minimum expectation is improvement on the Brostrom Gould which has been considered the gold standard.

Dr. Hardy
As surgeons, we are always looking to evolve and provide our patients with the best technology. The implants and the technology are not new – just the technique and application.

Dr. Shibuya
The InternalBrace ligament augmentation technique is simple and reproducible. The benefit simply outweighs the risk.

Dr. Todd
When I look at new technology I look at the science behind it. The InternalBrace ligament augmentation makes sense to me, you are not recreating the ligament, you are creating a door stop. You are allowing the tissues to heal with protection. You are not burning any bridges; you are advancing the standard Brostrom.

What are the technique pearls you have learned and can pass along?

Dr. Cicchinelli
Double check the talar drill hole placement, even with fluoro if necessary, to ensure you aren’t angled too high or too low. Then place a K-wire in this hole through the overlying retinaculum for ease of insertion of the talar SwiveLock® anchor.

Dr. Fleming
Placing a hemostat beneath the InternalBrace ligament augmentation is a rough estimate of the tension. Often I will leave the implant/anchor body engaged on the SwiveLock driver and test the stability. If it’s too loose or too tight it can still be modified and re-tensioned. Lastly, to anchor the talus in the correct position I place a bump beneath the Achilles tendon which allows the talus to seat within the mortise and then the repair is carried out.

Dr. Shibuya
Turning the paddle clockwise to lift the tip of the device after inserting the screw to make sure that the screw is seated all the way in the bone before removing it completely.

Dr. Todd
Make sure to tap the talus and leave the Tap within the talus. I always tension to the fibula. If you tension to the talus visualization is much more difficult. Make sure never to put the InternalBrace ligament augmentation intraarticular. This is not a ligament, and I believe that if it is used as a ligament/intraarticular you will have impingement. I have had to take out several from others who have used it in an intraarticular fashion.
Q: In simple terms, explain your surgical technique.

Dr. Cicchinelli
I do a standard Brostrom Gould repair dissection, prepare drill holes in the fibular rim and talus neck, then complete the soft tissue stabilization and add the InternalBrace Ligament Augmentation over the retinaculum repair. I seat the talus SwiveLock® anchor first and then the fibular.

Dr. Hardy
I release the capsule and ligament remnant off of the distal fibula. The exposed portion of the talus dome is inspected. The anterior portion of the distal fibula is then “roughened” up to achieve greater soft tissue attachment. The talar insertion of the ATFL is prepared for the 4.75 SwiveLock anchor. Attention is then directed to the distal fibula where it is divided into thirds. The proximal and distal thirds receive the 3 mm PushLock® anchors and the central third is prepared for the 4.75 SwiveLock anchor. The sutures from the 3 mm PushLock anchors are passed through the capsule and extensor retinaculum; they are not tied. A bump is then placed beneath the achilles and the ankle is reduced to neutral. The FiberTape® suture and SwiveLock anchor are then tensioned appropriately. The sutures from the PushLock anchor are now tied. If more tension is required, all of the tails including the InternalBrace ligament augmentation may be gathered and placed into a PushLock anchor in the lateral malleolus.

Dr. Todd
I use a lateral incision that is standard for a Brostrom with the incision 1 cm extended distally. I obtain my visualization of all my landmarks (distal fibula, talus). I like to place my primary anchors both at 10 and 20 mm superior to the distal tip of fibula. I favor the DEX 2.9 BioComposite® PushLock anchor because it allows me to preload a variety of sutures, such as the recently available SutureTape™ suture. I keep the foot in neutral/dorsiflexion, then proceed to drill/tap the talus and insert the 4.75 SwiveLock anchor preloaded with FiberTape suture. I complete my standard Brostrom repair as usual. I then drill/tap the fibula in-between the primary anchors and slightly superior. Keeping the foot in neutral I bring the two tails of FiberTape suture to my fibula hole. (Tensioning is always performed with a closed hemostat inferior to the FiberTape suture to prevent overtightening.)

Q: Describe the optimal technique for tensioning the final construct.

Dr. Cicchinelli
The ankle is placed at 90°, any bumps are removed from under the heel to prevent any undesired anterior drawer pressure and a hemostat is placed under the InternalBrace ligament augmentation as the fibular SwiveLock anchor is tightened down.

Dr. Hardy
After placing the ankle in the desired position (neutral sagittal plane and comparable amount of inversion to the contralateral ankle) and pinning it, I place a Kelly hemostat under the suture to ensure it is not overtightened.

Dr. Todd
Proper tensioning is of vital importance. I utilize a hemostat to palpate the tension of the InternalBrace ligament augmentation. I make sure that the ankle is in neutral and not everted.

Q: Describe your post-op rehab protocol? What is your post-op rehab protocol for your lateral ankle repairs without InternalBrace ligament augmentation?

The views expressed in this handout and video reflect the experience and the opinions of the presenting surgeons and do not necessarily reflect those of Arthrex® Inc. This is not medical advice and Arthrex recommends that surgeons be trained in the use of any particular product before using it in surgery. A surgeon must always rely on his or her own professional clinical judgment when deciding whether to use a particular product when treating a particular patient. A surgeon must also refer to the package insert, product label and instructions for use before using any Arthrex product. Products may not be available in all markets because product availability is subject to the regulatory approvals and medical practices in individual markets. Please contact your Arthrex representative if you have questions about availability of products in your area.

InternalBrace Ligament Augmentation:

Dr. Cicchinelli
A cast for nonweight-bearing for two weeks, then full weight-bearing into a fracture boot with removal for passive range of motion and bathing. Physical therapy begins at one month and into an ankle brace between 4 - 6 weeks.

Dr. Fleming
Range of motion exercise is begun when the wound is sealed. Protected weight-bearing may begin in two weeks if the patient can tolerate it. A home exercise program is prescribed and full return to activity is allowed at 12 weeks.

Dr. Hardy
Two weeks nonweight-bearing in cast; full weightbearing in boot with active range-of-motion; PT at four weeks; light running at six weeks and lateral maneuvers at eight weeks.
Dr. Shibuya
Immediate weight-bearing with a removable boot. In three weeks, the patient is to start range of motion exercise in the sagittal plane only. The patient is then to transition to supportive shoe gear with a lace-up ankle brace for two more additional weeks before transition completely to regular shoe gear.

Dr. Todd
1. Progress to weight-bearing with boot at two weeks.
 The first two weeks is nonweight-bearing (once the skin is healed patient can begin to put weight on the extremity).
2. Two weeks begins weight-bearing and physical therapy (No Inversion)
3. At five weeks transition to an ankle brace, advance therapy
4. At seven weeks begin running and ballistic movements

For a standard Brostrom without InternalBrace™ Ligament Augmentation the rehab is as follows:

Dr. Cicchinelli
A short leg cast for four weeks, nonweight-bearing the first three weeks, then conversion to a fracture walker boot, full weight-bearing, and initiation of physical therapy.

Dr. Fleming
Prior to the application of the InternalBrace ligament augmentation, my patients would be nonweight-bearing for six weeks.

Dr. Hardy
Three weeks non-weightbearing in everted cast; followed by boot for six weeks; transition to ankle brace with PT to follow; running and lateral maneuvers around 12 weeks.

Dr. Todd
1. Nonweight-bearing four weeks
2. At four weeks progress to cam boot
3. At eight weeks begin physical therapy progress to an ankle brace
4. No ballistic movements until week 16

Q: The InternalBrace ligament augmentation Implant System comes with 4.75 mm SwiveLock® anchors and 3.5 mm SwiveLock anchors. Where do you use the 3.5 mm & 4.75 mm SL anchors respectively?

Dr. Cicchinelli
The 4.75 mm SwiveLock anchor in the talus and the 3.5 mm SwiveLock anchor in the fibula.

Dr. Fleming
I actually use two 4.75 mm SwiveLock anchors for the repair. Talar purchase is never an issue but the fibula may not provide sufficient strength for the anchor.

Dr. Hardy
I use the larger 4.75 mm anchor in the fibula.

Dr. Shibuya
The 3.5 mm is always in the anterior-distal fibular malleolus. The 4.75 mm anchor(s) go in the talar neck.

Dr. Todd
I use the 3.5 mm SwiveLock anchor in the distal fibula and the 4.75 mm SwiveLock anchor into the talus.

Q: When would you use InternalBrace ligament augmentation in your lateral ankle instability cases? Do you incorporate a calcaneofibular ligament (CFL) limb, if so how often (what percent of the time)?

Dr. Cicchinelli
I have not seen the need to repair the CFL on a regular basis.

Dr. Fleming
I use the InternalBrace ligament augmentation to recreate the CFL if the stress inversion is grossly positive prior to surgery or there is documented STJ instability.

Dr. Hardy
I use it as an augment to my Brostrom procedures. I do not address the CFL.
Dr. Shibuya
When treating patients with chronic instability, they often lack functional stability and the reflex and proprioception to “fight” inversion are compromised. About 20% of the time the CFL limb is useful which consists of lots of revision work from previously failed Brostrom referred to my clinic.

Dr. Todd
With my patients who have lateral ankle instability I utilize the InternalBrace™ ligament augmentation when there is severe instability. I do not incorporate a CL limb as I do not believe this to be necessary.

Q What are your thoughts on indications of InternalBrace ligament augmentation versus when to do a full allograft reconstruction with tenodesis screw fixation?

Dr. Cicchinelli
In cases where there is severe tissue deficiency I feel an allograft repair is still indicated.

Dr. Fleming
The only indication for me is the patient where their native tissue is not of sufficient strength/quality.

Dr. Hardy
On revision cases and where the native tissue is too attenuated.

Q Have you ever considered InternalBrace ligament augmentation for other indications (Spring Ligament and/or Lateral Ankle with Arthroplasty)?

Dr. Cicchinelli
I have used it for spring ligament repair as part of adult acquired flatfoot reconstruction.

Dr. Fleming
Yes. We are currently exploring its use in acute deltoid reconstruction.

Dr. Hardy
I have used it for spring ligament augmentation, partial syndesmotic injuries and acute deltoid ligament repairs.

Dr. Shibuya
I have used for deltoid repair, arthroscopic anterior tibiofibular ligament rupture repair.

Dr. Todd
I have used it for spring ligament repairs.

Q What are your thoughts on the InternalBrace ligament augmentation avulsing the fibula after recovery and return to sports? Specifically if the patient suffers a traumatic inversion/plantar flexion event?

Dr. Fleming
I haven’t been concerned about that specifically. I tend to place it superior enough that I don’t think it compromises the structural integrity of the lateral malleolus.

Dr. Hardy
I do have this concern. The native tissues should be strong enough to withstand full activity at this point and it also obviates the concern for overtightening and possible avulsion injuries.

Dr. Shibuya
Out of 30 consecutive cases with fibular autograft anchoring with a tenodesis screw, I had two fractures of the fibula. Both patients were overweight males with severe underlying cavus foot deformity.

Dr. Todd
I do not believe this to be possible and have never seen this.

Q Do you feel there is a downside to implementing InternalBrace ligament augmentation on all lateral ankle, Spring and Deltoid repairs?

Dr. Cicchinelli
No, it is an augment and an anatomic footprint repair that can only add additional stability to native tissue if the native tissue is of sufficient quality.

Dr. Fleming
I don’t see any downsides from making this a routine practice. In fact, this has been the foundation for all of soft tissue repairs.

Q Can you make the InternalBrace ligament augmentation too tight?

Dr. Fleming
I think you can make it too tight. If you push the talus posteriorly beyond its resting state externally rotate the foot in the mortise you could over constrain the joint.

Dr. Shibuya
Yes, especially when it bridges not only the ankle joint but also the subtalar or mid-tarsal joint (by placing one of the arms into more distal osseous structures), it can be unnaturally tight if not careful.

Dr. Todd
In my experience you can make it too tight.
Lateral Ankle Repair Revolutionized

Please scan QR code for Surgical Technique Animation

Please scan QR code for MN defensive back with bilateral Brostrom with InternalBrace™ ligament augmentation seven weeks post-op.

Patient images, videos and/or testimonials used with written authorization of the patient.
InternalBrace™ Ligament Augmentation Repair Kit

The Brostrom lateral ankle ligament secondary repair is a proven method for treating a chronic lateral ligament disruption with instability. Since its original description in 1966, certain problematic issues have stimulated the use of augmentation techniques such as the use of the inferior extensor retinaculum, periosteum, and/or tendon transfer for lateral ankle ligament pathologies. The issues for which these augmentations have been designed include the fact that (1) the Brostrom repair needs a fairly extensive period of immobilization and protection to allow the tissue to mature adequately; (2) it does not work well in ligamentous lax patients; (3) patients with associated subtalar instability may require more substantial stabilization; (4) concerns exist regarding the adequacy of the secondary repair in especially large individuals; (5) questionable tissue for repair is often encountered; and (6) there is a 10-20% recorded failure rate over time.

Since all of the described augmentations to date utilize normal tissues in a non-anatomical fashion, we describe a simple augmentation technique that exceeds the native ATFL strength, does not violate normal tissue, and protects the ligament repair while it matures.

InternalBrace Ligament Augmentation Repair with Kit

(BAR-AR-1678-CP) includes:
- BioComposite SwiveLock anchor w/#2 FiberTape suture, 3.5 mm
- BioComposite SwiveLock anchor, 4.75 mm
- Guidewire w/Trocar Tip, 1.35 mm
- Drill Bit, cannulated, 2.7 mm
- Drill Bit, 2.7 mm
- Punch/Tap for 3.5 mm SwiveLock anchor
- Drill Bit, 3.4 mm
- Punch/Tap for 4.75 SwiveLock anchor
- Drill Guide
- Two Free Needles
- Suture Passing Wire

InternalBrace Ligament Augmentation Repair with Collagen Coated FiberTape Suture Kit (AR-1688-CP) Includes:
- BioComposite SwiveLock anchor w/#2 Collagen Coated FiberTape suture, 3.5 mm
- BioComposite SwiveLock anchor, 4.75 mm
- Guidewire w/Trocar Tip, 1.35 mm
- Drill Bit, cannulated, 2.7 mm
- Drill Bit, 2.7 mm
- Punch/Tap for 3.5 mm SwiveLock anchor
- Drill Bit, 3.4 mm
- Punch/Tap for 4.75 mm SwiveLock anchor
- Drill Guide
- Two Free Needles
- Suture Passing Wire

InternalBrace Ligament Augmentation Repair with PEEK

Literature:
- InternalBrace Ligament Augmentation Repair Product and Technique Highlights LS1-0408-EN
- InternalBrace Ligament Augmentation Repair for Spring Ligament Repair Product and Technique Highlights LS1-0405-EN
- InternalBrace Ligament Augmentation Repair for Deltoid Ligament Repair Product and Technique Highlights LS1-0407-EN
- InternalBrace Ligament Augmentation Roundtable Brochure LB1-00022-EN

Multimedia:
- InternalBrace Ligament Augmentation Repair for Lateral Ankle Instability VID1-00448-EN
- InternalBrace Ligament Augmentation Repair in Conjunction with Open Brostrom Surgical Technique VID1-0492-EN
- InternalBrace ATFL Ligament Augmentation Repair Cadaver Model, May, 2012 VID1-0408-EN
- InternalBrace Ligament Augmentation Repair: Verification of Benefit and Strength of Lateral Ankle RepairVID1-00011-EN
- Flatfoot Reconstruction with Spring Ligament InternalBrace Augmentation and Calcaneal Osteotomy Step Plate Surgical Technique Video VID1-00018-EN
- InternalBrace Ligament Augmentation Repair Presentation: Spring Ligament Surgical Technique, by Jorge Acevedo, MD VID1-0405-EN
- ATFL Talus to Fibula Animation AN1-00145-EN
- ATFL Fibula to Talus Animation AN1-00146-EN
- InternalBrace Ligament Augmentation Repair: Spring Ligament Animation AN1-0003-EN
References:

11. Mackay GM, Blyth MJG, Hopper GP, Anthony I, Ribbans WJ. A review of ligament augmentation with the Internal Brace: the surgical principle is described for the lateral ankle ligament and ACL repair in particular, and a comprehensive review of other surgical applications and techniques is presented. Surg Technol Int. 2015;26:239-255.

The views expressed in this handout and video reflect the experience and the opinions of the presenting surgeons and do not necessarily reflect those of Arthrex, Inc. This is not medical advice and Arthrex recommends that surgeons be trained in the use of any particular product before using it in surgery. A surgeon must always rely on his or her own professional clinical judgment when deciding whether to use a particular product when treating a particular patient. A surgeon must always refer to the package insert, product label and instructions for use before using any Arthrex product. Products may not be available in all markets because product availability is subject to the regulatory approvals and medical practices in individual markets. Please contact your Arthrex representative if you have questions about availability of products in your area.

Patient images, videos and/or testimonials used with written authorization of the patient.